Asymmetric Diels-Alder Reaction with use of (S)-5-(Trityloxymethyl)pyrrolidin-2-one as a Chiral Auxiliary

Kiyoshi Tomioka,* Noriko Hamada, Toshiro Suenaga, and Kenji Koga*

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract

(S)-5-(Trityloxymethyl)pyrrolidin-2-one (1) is an efficient and recyclable chiral auxiliary in the asymmetric Diels-Alder reaction of the imide (2) with dienes, affording cycloadducts (3) with excellent diastereofacial selectivity.

The asymmetric Diels-Alder reaction has been a focus in recent synthetic organic chemistry. ${ }^{1}$ We report herein an efficient asymmetric Diels-Alder reaction with use of (S)-5-(trityloxy-
methyl)pyrrolidin-2-one (1) as a chiral auxiliary which has been proven to induce high diastereofacial differentiation in conjugate additions. ${ }^{2}$ The chiral lactam (1) is quite unique in its

Table. Asymmetric Diels-Alder reaction of the chiral imides (2).

Run	$\begin{aligned} & (2) \\ & R^{1} \end{aligned}$	Diene	Lewis acid ${ }^{\text {a }}$	Temp/ $/{ }^{\circ} \mathrm{C}$	Cycloadduct (3)			
					Yield/ $\%{ }^{\text {b }}$	endo/exo ${ }^{\text {c }}$	Ratio ${ }^{\text {d }}$	d.e. $/ \%^{\circ}$
1	Me	Cyclopentadiene	None	15	44	80:20	42:58	16
2	Me		$\mathrm{BF}_{3} \mathrm{OEt}_{2}$	-78	0			
3	Me		EtAlCl ${ }_{2}$	-78	70	93:7	79:21	58
4	Me		$\mathrm{Et}_{2} \mathrm{AlCl}$	-78	98	>99:1	99:1	98
5	Me		$i-\mathrm{Bu}_{2} \mathrm{AlCl}$	-78	85	>99:1	99:1	98
6	Ph		$\mathrm{Et}_{2} \mathrm{AlCl}$	-78	92	>99:1	>99:1	>99
7	$\mathrm{CO}_{2} \mathrm{Me}$		$\mathrm{Et}_{2} \mathrm{AlCl}$	-78	95	96:4	99:1	98
8	Me	2-Methylbutadiene	$i-\mathrm{Bu}_{2} \mathrm{AlCl}$	-23	91		>99:1	>99
9	$\mathrm{CO}_{2} \mathrm{M} 2$		$\mathrm{Et}_{2} \mathrm{AlCl}$	-78	80		97:3	94
10	Me	Butadiene	$\mathrm{Et}_{2} \mathrm{AlCl}$	-23	36		>99:1	>99
11	$\mathrm{CO}_{2} \mathrm{Me}$		TiCl_{4}	-45	52		98:2	96
12	$\mathrm{CO}_{2} \mathrm{Me}$		$\mathrm{TiCl}_{2}(\mathrm{Oi}-\mathrm{Pr})_{2}$	0	92		93:7	86

${ }^{a} 1.0 \sim 2.5$ equiv of Lewis acid was used. ${ }^{b}$ Combined yield. ${ }^{c}$ Determined by HPLC and/or NMR analyses. ${ }^{\text {a }}$ Ratio of endo product. ${ }^{e}$ Diastereoisomeric excess of endo product.

(2)

(1)

(3)
$\mathrm{R}^{2} \mathrm{OLi}$

(4)

Scheme.

(3)
ability to control reaction stereochemistry by its characteristic conformation. ${ }^{3}$

The results of Diels-Alder reactions of the imide (2) with
various dienes are summarized in the Table. As we expected, almost complete diastereoface selection was observed in reaction of ($2 ; \mathbf{R}^{1}=\mathrm{Ph}$) with cyclopentadiene to afford (3), arising from the least hindered approach (run 6). ${ }^{2,3}$ The stereochemistry of (3) was confirmed by its conversion to (4). ${ }^{4}$

Recycling of the chiral auxiliary (1) is possible. Treatment of the cycloadduct ($\mathbf{3} ; \mathrm{R}^{1}=\mathrm{Ph}$) with $\mathrm{PhCH}_{\mathbf{2}} \mathrm{OLi}$ in THF at room temperature for 18 h provided, after work-up, the benzyl ester (4; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}$) and (1) in 93 and 92% yields, respectively. \dagger The optical purity of (4) $\left\{[\alpha]_{\mathrm{D}}^{25}\right.$ $\left.-120.5^{\circ}\left(c 1.41, \mathrm{CHCl}_{3}\right)\right\}$ was confirmed to be over 99% e.e. by comparison of the optical rotation with that reported $\left\{[\alpha]_{\mathrm{D}}\right.$ -121° (c 1.33, $\left.\left.\mathrm{CHCl}_{3}\right)\right\} .^{4}$ The absolute configuration of (3) and (4) was unambiguously determined by converting (3; $\left.\mathrm{R}^{1}=\mathrm{Ph}\right)$ to $(1 S, 2 R, 3 R, 4 R)$-bicyclo[2.2.1] heptane-2,3-dimethanol. ${ }^{5}$

We have also found that an exceptionally stereoselective reaction occurs between the fumarate derivative (2; $\mathbf{R}^{1}=$ $\mathrm{CO}_{2} \mathrm{Me}$) and cyclopentadiene to afford the cycloadduct (3 ; $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}$) in 98% d.e. and in 95% yield (Table, run 7). Treatment of ($3 ; \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}$) with MeOLi in THF also provided (1) (81%) for recycling and the dimethyl ester (4; $\left.\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me}\right)(72 \%)$ which was then reduced with LiAlH_{4} to $(1 S, 4 R, 5 R, 6 R)$-bicyclo[2.2.1]hept-2-ene-5,6dimethanol $\left\{[\alpha]_{\mathrm{D}}^{22}+22.5^{\circ}\left(c 1.03, \mathrm{CHCl}_{3}\right) ;\right.$ lit, ${ }^{5}[\alpha]_{\mathrm{D}}^{22}+23^{\circ}(c$ $\left.0.6, \mathrm{CHCl}_{3}\right)$ \}, confirming the absolute configuration as well as an optical purity of 98%.
The stereochemical course of the Diels-Alder reaction generally takes place on the front face of (2), avoiding steric interference with the trityloxymethyl group. ${ }^{2,3}$ To gain more insight into the stereochemistry, reactions of $\left(\mathbf{2} ; \mathrm{R}^{1}=\mathrm{Me}\right)$ with cyclopentadiene were studied with regard to the effect of Lewis acids.
In the absence of Lewis acid, the reaction proceeded at $15^{\circ} \mathrm{C}$ to afford the cycloadducts in 16% d.e. and the major product was the diastereoisomer of (3) (Table, run 1). Among those Lewis acids tested, $i-\mathrm{Bu}_{2} \mathrm{AlCl}$ and $\mathrm{Et}_{2} \mathrm{AlCl}$ were superior to others (runs 2-5).

Dienes other than cyclopentadiene were also applicable in the present asymmetric Diels-Alder reaction to provide various types of cycloadducts. The reaction of (2) with isoprene provided (3) in excellent d.e. and yields (run 8-9). However, reactions with butadiene were sluggish under catalysis by dialkylaluminium chlorides; in this case, TiCl_{4} or $\mathrm{TiCl}_{2}(\mathrm{O} i-\mathrm{Pr})_{2}$

[^0]are the Lewis acids of choice, affording efficiently cycloadduct (3) (see runs 10-11).

As has been reported by Dr. I. Fleming in the case of asymmetric conjugate addition reactions, ${ }^{6}$ the trityl-lactam (1) is also a potentially useful chiral auxiliary in an asymmetric Diels-Alder reaction. Further studies using (1) are in progress in our laboratories.

Experimental

Typical procedure is exemplified by the following reaction (Scheme 1, Table, run 6): to a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of the imide ($\left.2 ; \mathrm{R}^{1}=\mathrm{Ph}\right)(1.22 \mathrm{~g}, 2.50 \mathrm{mmol})^{2}$ and cyclopentadiene ($10 \mathrm{ml}, 12.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 25 \mathrm{ml}$ was added $\mathrm{Et}_{2} \mathrm{AlCl}(1 \mathrm{M}$ in hexane; $3.5 \mathrm{ml}, 3.50 \mathrm{mmol}$). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{ml})$ and $10 \% \mathrm{HCl}(15 \mathrm{ml})$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ repeatedly. The combined extracts were washed with saturated aqueous NaHCO_{3} and brine, then dried and concentrated. Column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-benzeneAcOEt, 25:25:1) afforded the adduct ($3 ; \mathrm{R}^{1}=\mathrm{Ph}$) in 92% yield, m.p. ${ }^{186-187}{ }^{\circ} \mathrm{C}$ (Found: C, 82.18; H, 6.43; N, 2.71\%. $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{NO}_{3}$ requires C, 82.42; $\mathrm{H}, 6.38 ; \mathrm{N}, 2.53 \% ; M^{+}, 553$); $[\alpha]_{\mathrm{D}}^{20}-118.4^{\circ}\left(c 1.01, \mathrm{CHCl}_{3}\right) ; \mathrm{v}_{\max }(\mathrm{KBr}) 1730$ and $1687 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CDCl}_{3}\right) 1.4-3.6(11 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{dd}, J 3.4$ and 5.4 Hz$), 4.5$ $(1 \mathrm{H}, \mathrm{m}), 5.61(1 \mathrm{H}, \mathrm{dd}, J 2.7$ and 5.6 Hz$), 6.42(1 \mathrm{H}, \mathrm{dd}, J 3.2$ and $5.6 \mathrm{~Hz})$, and $7.0-7.5(20 \mathrm{H}, \mathrm{m})$.

Acknowledgements

The authors are grateful to the Japanese Foundation for Optically Active Compounds and the Hoansha Foundation for financially supporting a part of this work.

References

1 Review: G. Helmchen, R. Karge, and J. Weetman, 'Modern Synthetic Methods,' ed. by R. Scheffold, Springer-Verlag, Berlin, 1986, Vol. IV, p. 262; Leading references: M. E. Jung, W. D. Vaccaro, and K. R. Buszek, Tetrahedron Lett., 1989, 1893, and references cited therein.
2 K. Tomioka, T. Suenaga, and K. Koga, Tetrahedron Lett., 1986, 369.
3 K. Tomioka, Y.-S. Cho, F. Sato, and K. Koga, J. Org. Chem., 1988, 53, 4094.

4 D. A. Evans, K. T. Chapman, and J. Bisaha, J. Am. Chem. Soc., 1988, 110, 1238.
5 D. Horton, T. Machinami, and Y. Takagi, Carbohydr. Res., 1983, 121, 135.

6 I. Fleming and N. D. Kindon, J. Chem. Soc., Chem. Commun., 1987, 1177.

Paper 9/04622D
Received 21st August 1989
Accepted 30th October 1989

[^0]: \dagger The acyclic amide-ester initially formed by ring-opening of the lactam is converted to (4) and (1). See also reference 6.

