Asymmetric Diels-Alder Reaction with use of (S)-5-(Trityloxymethyl)pyrrolidin-2-one as a Chiral Auxiliary

Kiyoshi Tomioka,* Noriko Hamada, Toshiro Suenaga, and Kenji Koga* Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

(S)-5-(Trityloxymethyl)pyrrolidin-2-one (1) is an efficient and recyclable chiral auxiliary in the asymmetric Diels-Alder reaction of the imide (2) with dienes, affording cycloadducts (3) with excellent diastereofacial selectivity.

The asymmetric Diels-Alder reaction has been a focus in recent synthetic organic chemistry.¹ We report herein an efficient asymmetric Diels-Alder reaction with use of (S)-5-(trityloxy-

methyl)pyrrolidin-2-one (1) as a chiral auxiliary which has been proven to induce high diastereofacial differentiation in conjugate additions.² The chiral lactam (1) is quite unique in its

Table. Asymmetric Diels-Alder reaction of the chiral imides (2).

	Run	(2) R ¹	Diene	Lewis acid ^a	Temp/°C	Cycloadduct (3)				
						Yield/% ^b	endo/exo ^c	Ratio ^d	d.e./% ^e	
	1	Me	Cyclopentadiene	None	15	44	80:20	42:58	16	
	2	Me		BF ₃ OEt ₂	78	0				
	3	Me		EtAlCl ₂	78	70	93:7	79:21	58	
	4	Me		Et ₂ AlCI	78	98	>99:1	99:1	98	
	5	Me		i-Bu ₂ AlCl	78	85	>99:1	99:1	98	
	6	Ph		Et ₂ AlCl	- 78	92	>99:1	>99:1	>99	
	7	CO ₂ Me		EtAICI	78	95	96:4	99:1	98	
	8	Me	2-Methylbutadiene	i-Bu-AlCl	-23	91		>99:1	>99	
	9	CO ₂ M2		Et ₂ AlCl	- 78	80		97:3	94	
	10	Me	Butadiene	EtAICI	-23	36		>99:1	>99	
	11	CO ₂ Me		TiCL	45	52		98:2	96	
	12	CO ₂ Me		$TiCl_2(Oi-Pr)_2$	0	92		93:7	86	

^a 1.0 ~ 2.5 equiv of Lewis acid was used. ^b Combined yield. ^c Determined by HPLC and/or NMR analyses. ^d Ratio of *endo* product. ^e Diastereoisomeric excess of *endo* product.

(3)

ability to control reaction stereochemistry by its characteristic conformation.³

The results of Diels-Alder reactions of the imide (2) with

various dienes are summarized in the Table. As we expected, almost complete diastereoface selection was observed in reaction of (2; $R^1 = Ph$) with cyclopentadiene to afford (3), arising from the least hindered approach (run 6).^{2,3} The stereochemistry of (3) was confirmed by its conversion to (4).⁴

Recycling of the chiral auxiliary (1) is possible. Treatment of the cycloadduct (3; $\mathbb{R}^1 = \mathbb{Ph}$) with \mathbb{PhCH}_2OLi in THF at room temperature for 18 h provided, after work-up, the benzyl ester (4; $\mathbb{R}^1 = \mathbb{Ph}$, $\mathbb{R}^2 = \mathbb{CH}_2\mathbb{Ph}$) and (1) in 93 and 92% yields, respectively.† The optical purity of (4) { $[\alpha]_D^2 5^5 - 120.5^\circ$ (c 1.41, \mathbb{CHCl}_3)} was confirmed to be over 99% e.e. by comparison of the optical rotation with that reported { $[\alpha]_D - 121^\circ$ (c 1.33, \mathbb{CHCl}_3)}.⁴ The absolute configuration of (3) and (4) was unambiguously determined by converting (3; $\mathbb{R}^1 = \mathbb{Ph}$) to (1*S*,2*R*,3*R*,4*R*)-bicyclo[2.2.1]heptane-2,3-dimethanol.⁵

We have also found that an exceptionally stereoselective reaction occurs between the fumarate derivative (2; $R^1 = CO_2Me$) and cyclopentadiene to afford the cycloadduct (3; $R^1 = CO_2Me$) in 98% d.e. and in 95% yield (Table, run 7). Treatment of (3; $R^1 = CO_2Me$) with MeOLi in THF also provided (1) (81%) for recycling and the dimethyl ester (4; $R^1 = CO_2Me$, $R^2 = Me$) (72%) which was then reduced with LiAlH₄ to (1*S*,4*R*,5*R*,6*R*)-bicyclo[2.2.1]hept-2-ene-5,6dimethanol {[α]²²_D + 22.5° (c 1.03, CHCl₃); lit,⁵ [α]²²_D + 23° (c 0.6, CHCl₃)}, confirming the absolute configuration as well as an optical purity of 98%.

The stereochemical course of the Diels-Alder reaction generally takes place on the front face of (2), avoiding steric interference with the trityloxymethyl group.^{2,3} To gain more insight into the stereochemistry, reactions of (2; $R^1 = Me$) with cyclopentadiene were studied with regard to the effect of Lewis acids.

In the absence of Lewis acid, the reaction proceeded at 15 °C to afford the cycloadducts in 16% d.e. and the major product was the diastereoisomer of (3) (Table, run 1). Among those Lewis acids tested, *i*-Bu₂AlCl and Et₂AlCl were superior to others (runs 2–5).

Dienes other than cyclopentadiene were also applicable in the present asymmetric Diels-Alder reaction to provide various types of cycloadducts. The reaction of (2) with isoprene provided (3) in excellent d.e. and yields (run 8-9). However, reactions with butadiene were sluggish under catalysis by dialkylaluminium chlorides; in this case, TiCl₄ or TiCl₂(Oi-Pr)₂

[†] The acyclic amide-ester initially formed by ring-opening of the lactam is converted to (4) and (1). See also reference 6.

are the Lewis acids of choice, affording efficiently cycloadduct (3) (see runs 10-11).

As has been reported by Dr. I. Fleming in the case of asymmetric conjugate addition reactions,⁶ the trityl-lactam (1) is also a potentially useful chiral auxiliary in an asymmetric Diels-Alder reaction. Further studies using (1) are in progress in our laboratories.

Experimental

Typical procedure is exemplified by the following reaction (Scheme 1, Table, run 6): to a cooled (-78 °C) solution of the imide (2; $R^1 = Ph$) (1.22 g, 2.50 mmol)² and cyclopentadiene (10 ml, 12.5 mmol) in CH₂Cl₂ 25 ml was added Et₂AlCl (1M in hexane; 3.5 ml, 3.50 mmol). The mixture was stirred at -78 °C for 1 h and guenched with saturated aqueous NH₄Cl (15 ml) and 10% HCl (15 ml). The product was extracted with CH₂Cl₂ repeatedly. The combined extracts were washed with saturated aqueous NaHCO3 and brine, then dried and concentrated. Column chromatography (SiO₂, hexane-benzene-AcOEt, 25:25:1) afforded the adduct (3; $R^1 = Ph$) in 92% yield, m.p. 186-187 °C (Found: C, 82.18; H, 6.43; N, 2.71%. $C_{38}H_{35}NO_3$ requires C, 82.42; H, 6.38; N, 2.53%; M^+ , 553); $[\alpha]_D^{20} - 118.4^\circ$ (c 1.01, CHCl₃); v_{max} (KBr) 1 730 and 1 687 cm⁻¹; δ(CDCl₃) 1.4-3.6 (11 H, m), 4.30 (1 H, dd, J 3.4 and 5.4 Hz), 4.5 (1 H, m), 5.61 (1 H, dd, J 2.7 and 5.6 Hz), 6.42 (1 H, dd, J 3.2 and 5.6 Hz), and 7.0-7.5 (20 H, m).

Acknowledgements

The authors are grateful to the Japanese Foundation for Optically Active Compounds and the Hoansha Foundation for financially supporting a part of this work.

References

- 1 Review: G. Helmchen, R. Karge, and J. Weetman, 'Modern Synthetic Methods,' ed. by R. Scheffold, Springer-Verlag, Berlin, 1986, Vol. IV, p. 262; Leading references: M. E. Jung, W. D. Vaccaro, and K. R. Buszek, *Tetrahedron Lett.*, 1989, 1893, and references cited therein.
- 2 K. Tomioka, T. Suenaga, and K. Koga, Tetrahedron Lett., 1986, 369.
- 3 K. Tomioka, Y.-S. Cho, F. Sato, and K. Koga, J. Org. Chem., 1988, 53,
- 4094. 4 D. A. Evans, K. T. Chapman, and J. Bisaha, J. Am. Chem. Soc., 1988, 110, 1238.
- 5 D. Horton, T. Machinami, and Y. Takagi, Carbohydr. Res., 1983, 121, 135.
- 6 I. Fleming and N. D. Kindon, J. Chem. Soc., Chem. Commun., 1987, 1177.

Paper 9/04622D Received 21st August 1989 Accepted 30th October 1989